MELTING OF THE EUCLIDEAN METRIC TO NEGATIVE SCALAR CURVATURE

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conformal Deformation of a Riemannian Metric to Constant Scalar Curvature

A well-known open question in differential geometry is the question of whether a given compact Riemannian manifold is necessarily conformally equivalent to one of constant scalar curvature. This problem is known as the Yamabe problem because it was formulated by Yamabe [8] in 1960, While Yamabe's paper claimed to solve the problem in the affirmative, it was found by N. Trudinger [6] in 1968 tha...

متن کامل

Cones in the Euclidean space with vanishing scalar curvature.

Given a hypersurface M on a unit sphere of the Euclidean space, we define the cone based on M as the set of half-lines issuing from the origin and passing through M. By assuming that the scalar curvature of the cone vanishes, we obtain conditions under which bounded domains of such cone are stable or unstable.

متن کامل

Negative Gaussian curvature from induced metric changes.

We revisit the light or heat-induced changes in topography of initially flat sheets of a solid that elongate or contract along patterned in-plane director fields. For radial or azimuthal directors, negative Gaussian curvature is generated-so-called "anticones." We show that azimuthal material displacements are required for the distorted state to be stretch free and bend minimizing. The resultan...

متن کامل

Manifolds with singularities accepting a metric of positive scalar curvature

We study the question of existence of a Riemannian metric of positive scalar curvature metric on manifolds with the Sullivan–Baas singularities. The manifolds we consider are Spin and simply connected. We prove an analogue of the Gromov–Lawson Conjecture for such manifolds in the case of particular type of singularities. We give an affirmative answer when such manifolds with singularities accep...

متن کامل

Constant scalar curvature Kähler metric and K-energy

Based on Donaldson’s method, we prove that, for an integral Kähler class, when there is a Kähler metric of constant scalar curvature, then it minimizes the K-energy. We do not assume that the automorphism group is discrete.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Korean Mathematical Society

سال: 2013

ISSN: 1015-8634

DOI: 10.4134/bkms.2013.50.4.1087